6,087 research outputs found

    Topographically forced long waves on a sheared coastal current. Part 1. The weakly nonlinear response

    Get PDF
    The flow of a constant-vorticity current past coastal topography is investigated in the long-wave weakly nonlinear limit. In contrast to other near-critical weakly nonlinear systems this problem does not exhibit hydraulically controlled solutions. It is shown that near criticality the evolution of the vorticity interface is governed by a forced BDA (Benjamin-Davis-Acrivos) equation. The solutions of this equation are discussed and two distinct near-critical flow regimes are identified. Owing to the non-local nature of the forcing, the first of these regimes is characterized by quasi-steady solutions controlled at the topography with some blocking of the upstream rotational fluid, while in the second regime steady nonlinear wavetrains form downstream of the obstacle with no upstream influence. In the hydraulic limit the velocity band for both of these critical regimes approaches zero

    Gap-Leaping Vortical Currents

    Get PDF
    A one-parameter family of exact solutions describing the bifurcation of a steady two-dimensional current with uniform vorticity near a gap in a thin barrier is found. The unsteady evolution of source-driven flows toward these steady states is studied using a version of contour dynamics, appropriately modified to take into account the presence of a barrier with a single gap. It is shown that some of the steady solutions are realizable as large-time limits of the source-driven flows, although some are not owing to persistent eddy-shedding events in the vicinity of the gap. For the special case when there is zero net flux through the gap, numerical experiments show that the through-gap flux of vortical fluid increases with the width of the gap and that this flux approaches a steady limit with time

    Surf-zone vortices over stepped topography

    Get PDF
    The problem of vortical motions in the surf zone is simplified by taking the bottom topography to be piecewise flat while allowing finite-height jumps in depth between flat regions. The motion of an arbitrary number of singular vortices is cast into Hamiltonian form and the rule for relating Hamiltonians in conformally equivalent domains derived. Examples are given of a singular vortex pair colliding head-on with a step, of a vortex propagating along a curved coast to cross a step, and of a vortex being swept past a circular island straddling a step. Surf-zone vortices are then modelled as finite-area vortex patches and their motion followed by contour dynamics. It is shown that the paths of singular vortices can yield highly accurate explicit predictions of the paths of the centroids of vortex patches. Possible applications to surf-zone rip currents are noted

    Vortices near barriers with multiple gaps

    Get PDF
    Two models are presented for the motion of vortices near gaps in infinitely long barriers. The first model considers a line vortex for which the exact nonlinear trajectories satisfying the governing two-dimensional Euler equations are obtained analytically. The second model considers a finite-area patch of constant vorticity and is based on conformal mapping and the numerical method of contour surgery. The two models enable a comparison of the trajectories of line vortices and vortex patches. The case of a double gap formed by an island lying between two headlands is considered in detail. It is noted that Kelvin's theorem constrains the circulation around the island to be a constant and thus forces a time-dependent volume flux between the islands and the headlands. When the gap between the island and a headland is small this flux requires arbitrarily large flow speeds through the gap. In most examples the centroid of the patch is constrained to follow closely the trajectory of a line vortex of the same circulation. Exceptions occur when the through-gap flow forces the vortex patch close to an edge of the island where it splits into two with only part of the vortex passing through the gap. In general the part squeezing through a narrow gap returns to near-circular to have a diameter significantly larger than the gap width

    Topographically forced long waves on a sheared coastal current. Part 2. Finite amplitude waves

    Get PDF
    This paper analyses the finite-amplitude flow of a constant-vorticity current past coastal topography in the long-wave limit. A forced finite-amplitude long-wave equation is derived to describe the evolution of the vorticity interface. An analysis of this equation shows that three distinct near-critical regimes occur. In the first the upstream flow is restricted, with overturning of the vorticity interface for sufficiently large topography. In the second quasi-steady nonlinear waves form downstream of the topography with weak upstream influence. In the third regime the upstream rotational fluid is partially blocked. Blocking and overturning are enhanced at headlands with steep rear faces and decreased at headlands with steep forward faces. For certain parameter values both overturning and partially blocked solutions are possible and the long-time evolution is critically dependent on the initial conditions. The reduction of the problem to a one-dimensional nonlinear wave equation allows solutions to be followed to much longer times and parameter space to be explored more finely than in the related pioneering contour-dynamical integrations of Stern (1991)

    Stratified separated flow around a mountain with an inversion layer below the mountain top

    Get PDF
    This paper presents analytical and numerical results for separated stratified inviscid flow over and around an isolated mountain in the limit of small Fronde number. The vertical density profile consists of a lower strongly stratified layer whose depth is just less than that of the mountain. It is separated from a semi-infinite upper stably stratified layer by a thin, highly stable, inversion layer. The paper aims to provide, for this particular profile, a thorough analysis of the three-dimensional separated flow over a mountain top with strong stratification. The Froude numbers F and F, of the lower layer and the interface are small with F-1 << F << 1, but the upper-layer Froude number is arbitrary. The flow at each height in the lower layer is governed by the two-dimensional Euler equations and moves horizontally around the mountain. It is given by a modification of a previous model using Kirchhoff free-streamline theory for the separated flow region downstream of the mountain. The pressure variations associated with the lower-layer flow are of the same order as the dynamic head and induce significant displacements of the inversion layer. When the inversion is near the top of the mountain these deflections are of the same order as the height of the projecting part of the mountain top and combine with the flow over the mountain top to excite vertically propagating internal waves in the upper layer. The resultant pressure field, vertical stream surface displacements, and surface streamlines in the upper layer are described consistently in the hydrostatic limit. Many of the features of the upper flow, including the perturbations of the critical dividing streamlines, are similar to those in flows with uniform stable stratification at low Froude number. Comparisons are made with experiments and approximate models for these summit flows based on the assumption that the dividing streamlines have small vertical displacement

    Vortex scattering by step topography

    Get PDF
    The scattering at a rectilinear step change in depth of a shallow-water vortex pair consisting of two patches of equal but opposite-signed vorticity is studied. Using the constants of motion, an explicit relationship is derived relating the angle of incidence to the refracted angle after crossing. A pair colliding with a step from deep water crosses the escarpment and subsequently propagates in shallow water refracted towards the normal to the escarpment. A pair colliding with a step from shallow water either crosses and propagates in deep water refracted away from the normal or, does not cross the step and is instead totally internally reflected by the escarpment. For large depth changes, numerical computations show that the coherence of the vortex pair is lost on encountering the escarpment

    Non-dispersive and weakly dispersive single-layer flow over an axisymmetric obstacle: the equivalent aerofoil formulation

    Get PDF
    Non-dispersive and weakly dispersive single-layer flows over axisymmetric obstacles, of non-dimensional height M measured relative to the layer depth, are investigated. The case of transcritical flow, for which the Froude number F of the oncoming flow is close to unity, and that of supercritical flow, for which F > 1, are considered. For transcritical flow, a similarity theory is developed for small obstacle height and, for non-dispersive flow, the problem is shown to be isomorphic to that of the transonic flow of a compressible gas over a thin aerofoil. The non-dimensional drag exerted by the obstacle on the flow takes the form D(Gamma)M-5/3, where Gamma = (F - 1)M-2/3 is a transcritical similarity parameter and D is a function which depends on the shape of the 'equivalent aerofoil' specific to the obstacle. The theory is verified numerically by comparing results from a shock-capturing shallow-water model with corresponding solutions of the transonic small-disturbance equation, and is found to be generally accurate for M less than or similar to 0.4 and vertical bar Gamma vertical bar less than or similar to 1. In weakly dispersive flow the equivalent aerofoil becomes the boundary condition for the Kadomtsev-Petviashvili equation and (multiple) solitary waves replace hydraulic jumps in the resulting flow patterns.For Gamma greater than or similar to 1.5 the transcritical similarity theory is found to be inaccurate and, for small M, flow patterns are well described by a supercritical theory, in which the flow is determined by the linear solution near the obstacle. In this regime the drag is shown to be c(d)M(2)/(F root F-2 - 1), where c(d) is a constant dependent on the obstacle shape. Away from the obstacle, in non-dispersive flow the far-field behaviour is known to be described by the N-wave theory of Whitham and in dispersive flow by the Kortewegde Vries equation. In the latter case the number of emergent solitary waves in the wake is shown to be a function of A = 3M/(2 delta(2) root F-2 - 1), where delta is the ratio of the undisturbed layer depth to the radial scale of the obstacle

    Transcritical rotating flow over topography

    Get PDF
    The flow of a one-and-a-half layer fluid over a three-dimensional obstacle of non-dimensional height M, relative to the lower layer depth, is investigated in the presence of rotation, the magnitude of which is measured by a non-dimensional parameter B (inverse Burger number). The transcritical regime in which the Froude number F, the ratio of the flow speed to the interfacial gravity wave speed, is close to unity is considered in the shallow-water (small-aspect-ratio) limit. For weakly rotating flow over a small isolated obstacle (M -> 0) a similarity theory is developed in which the behaviour is shown to depend on the parameters Gamma = (F - 1)M-2/3 and nu = (BM-1/3)-M-1/2. The flow pattern in this regime is determined by a nonlinear equation in which Gamma and nu appear explicitly, termed here the 'rotating transcritical small-disturbance equation' (rTSD equation, following the analogy with compressible gasdynamics). The rTSD equation is forced by 'equivalent aerofoil' boundary conditions specific to each obstacle. Several qualitatively new flow behaviours are exhibited, and the parameter reduction afforded by the theory allows a (Gamma, nu) regime diagram describing these behaviours to be constructed numerically. One important result is that, in a supercritical oncoming flow in the presence of sufficient rotation (nu greater than or similar to 2), hydraulic jumps can appear downstream of the obstacle even in the absence of an upstream jump. Rotation is found to have the general effect of increasing the amplitude of any existing downstream hydraulic jumps and reducing the lateral extent and amplitude of upstream jumps. Numerical results are compared with results from a shock-capturing shallow-water model, and the (Gamma, nu) regime diagram is found to give good qualitative and quantitative predictions of flow patterns at finite obstacle height (at least for M less than or similar to 0.4). Results are compared and contrasted with those for a two-dimensional obstacle or ridge, for which rotation also causes hydraulic jumps to form downstream of the obstacle and acts to attenuate upstream jumps

    Whitham modulation theory for the Ostrovsky equation

    Get PDF
    This paper derives the Whitham modulation equations for the Ostrovsky equation. The equations are then used to analyse localised cnoidal wavepacket solutions of the Ostrovsky equation in the weak rotation limit. The analysis is split into two main parameter regimes: the Ostrovsky equation with normal dispersion relevant to typical oceanic parameters and the Ostrovsky equation with anomalous dispersion relevant to strongly sheared oceanic flows and other physical systems. For anomalous dispersion a new steady, symmetric cnoidal wavepacket solution is presented. The new wavepacket can be represented as a solution of the modulation equations and an analytical solution for the outer solution of the wavepacket is given. For normal dispersion the modulation equations are used to describe the unsteady finite-amplitude wavepacket solutions produced from the rotation-induced decay of a Korteweg-de Vries solitary wave. Again, an analytical solution for the outer solution can be given. The centre of the wavepacket closely approximates a train of solitary waves with the results suggesting that the unsteady wavepacket is a localised, modulated cnoidal wavetrain. The formation of wavepackets from solitary wave initial conditions is considered, contrasting the rapid formation of the packets in anomalous dispersion with the slower formation of unsteady packets under normal dispersion
    corecore